Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.01.07.24300910

ABSTRACT

ObjectiveTo evaluate the durability of protection provided by original monovalent and bivalent COVID-19 vaccination against COVID-19-associated hospitalization and severe in-hospital outcomes. DesignMulticenter case-control design with prospective enrollment Setting26 hospitals in 20 US states ParticipantsAdults aged [≥]18 years admitted to hospital with COVID-19-like illness from 8 September 2022 to 31 August 2023 Main outcome measuresThe main outcomes were absolute and relative vaccine effectiveness of original monovalent and bivalent COVID-19 vaccines against COVID-19-associated hospitalization and severe in-hospital outcomes, including advanced respiratory support (defined as receipt of high-flow nasal cannula, non-invasive ventilation, or invasive mechanical ventilation [IMV]) and IMV or death. Vaccine effectiveness was estimated using multivariable logistic regression, in which the odds of vaccination (versus being unvaccinated or receiving original monovalent vaccination only) were compared between COVID-19 case patients and control-patients. Bivalent vaccine effectiveness analyses were stratified by time since dose receipt. ResultsAmong 7028 adults without immunocompromising conditions, 2924 (41.6%) were COVID-19 case patients and 4104 (58.4%) were control patients. Compared to unvaccinated patients, absolute vaccine effectiveness against COVID-19-associated hospitalization was 6% (-7% to 17%) for original monovalent doses only (median time since last dose [IQR] = 421 days [304-571]), 52% (39% to 61%) for a bivalent dose received 7-89 days earlier, and 13% (-10% to 31%) for a bivalent dose received 90-179 days earlier. Absolute vaccine effectiveness against COVID-19-associated advanced respiratory support was 31% (15% to 45%) for original monovalent doses only, 66% (47% to 78%) for a bivalent dose received 7-89 days earlier, and 33% (-1% to 55%) for a bivalent dose received 90-179 days earlier. Absolute vaccine effectiveness against COVID-19-associated IMV or death was 51% (34% to 63%) for original monovalent doses only, 61% (35% to 77%) for a bivalent dose received 7-89 days earlier, and 50% (11% to 71%) for a bivalent dose received 90-179 days earlier. ConclusionWhen compared to original monovalent vaccination only, bivalent COVID-19 vaccination provided additional protection against COVID-19-associated hospitalization and certain severe in-hospital outcomes within 3 months of dose receipt. By 3-6 months, protection from a bivalent dose declined to a level similar to that remaining from original monovalent vaccination only. Although no protection remained from original monovalent vaccination against COVID-19-associated hospitalization, it provided durable protection against severe in-hospital outcomes >1 year after receipt of the last dose, particularly against IMV or death. SUMMARY BOX What is already known on this topic- On September 1, 2022, bivalent mRNA COVID-19 vaccination was recommended for US adults who had completed at least an original monovalent COVID-19 primary series. - Early estimates of bivalent vaccine effectiveness are available for the period soon after dose receipt; however fewer data exist on their durability of protection and effectiveness against severe outcomes. What this study adds- When compared to original monovalent vaccination only, bivalent mRNA COVID-19 vaccination provided additional protection against COVID-19-associated hospitalization and certain severe in-hospital outcomes within 3 months of dose receipt. By 3-6 months, protection from a bivalent dose declined to a level similar to that remaining from original monovalent vaccination only. - Although no protection remained from original monovalent vaccination against COVID-19-associated hospitalization, it provided durable protection against severe in-hospital outcomes >1 year after receipt of the last dose, particularly against invasive mechanical ventilation or death.


Subject(s)
COVID-19 , Death
2.
Immunity ; 56(7): 1681-1698.e13, 2023 Jul 11.
Article in English | MEDLINE | ID: covidwho-20243335

ABSTRACT

CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.


Subject(s)
COVID-19 , Deep Learning , Humans , Captan , SARS-CoV-2 , HLA Antigens , Epitopes, T-Lymphocyte , Peptides
3.
Clin Infect Dis ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20238063

ABSTRACT

INTRODUCTION: Understanding the changing epidemiology of adults hospitalized with coronavirus disease 2019 (COVID-19) informs research priorities and public health policies. METHODS: Among adults (≥18 years) hospitalized with laboratory-confirmed, acute COVID-19 between 11 March 2021, and 31 August 2022 at 21 hospitals in 18 states, those hospitalized during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-predominant period (BA.1, BA.2, BA.4/BA.5) were compared to those from earlier Alpha- and Delta-predominant periods. Demographic characteristics, biomarkers within 24 hours of admission, and outcomes, including oxygen support and death, were assessed. RESULTS: Among 9825 patients, median (interquartile range [IQR]) age was 60 years (47-72), 47% were women, and 21% non-Hispanic Black. From the Alpha-predominant period (Mar-Jul 2021; N = 1312) to the Omicron BA.4/BA.5 sublineage-predominant period (Jun-Aug 2022; N = 1307): the percentage of patients who had ≥4 categories of underlying medical conditions increased from 11% to 21%; those vaccinated with at least a primary COVID-19 vaccine series increased from 7% to 67%; those ≥75 years old increased from 11% to 33%; those who did not receive any supplemental oxygen increased from 18% to 42%. Median (IQR) highest C-reactive protein and D-dimer concentration decreased from 42.0 mg/L (9.9-122.0) to 11.5 mg/L (2.7-42.8) and 3.1 mcg/mL (0.8-640.0) to 1.0 mcg/mL (0.5-2.2), respectively. In-hospital death peaked at 12% in the Delta-predominant period and declined to 4% during the BA.4/BA.5-predominant period. CONCLUSIONS: Compared to adults hospitalized during early COVID-19 variant periods, those hospitalized during Omicron-variant COVID-19 were older, had multiple co-morbidities, were more likely to be vaccinated, and less likely to experience severe respiratory disease, systemic inflammation, coagulopathy, and death.

4.
JAMA Netw Open ; 6(5): e2314428, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-20233159

ABSTRACT

Importance: Platelet activation is a potential therapeutic target in patients with COVID-19. Objective: To evaluate the effect of P2Y12 inhibition among critically ill patients hospitalized for COVID-19. Design, Setting, and Participants: This international, open-label, adaptive platform, 1:1 randomized clinical trial included critically ill (requiring intensive care-level support) patients hospitalized with COVID-19. Patients were enrolled between February 26, 2021, through June 22, 2022. Enrollment was discontinued on June 22, 2022, by the trial leadership in coordination with the study sponsor given a marked slowing of the enrollment rate of critically ill patients. Intervention: Participants were randomly assigned to receive a P2Y12 inhibitor or no P2Y12 inhibitor (usual care) for 14 days or until hospital discharge, whichever was sooner. Ticagrelor was the preferred P2Y12 inhibitor. Main Outcomes and Measures: The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death and, for participants who survived to hospital discharge, the number of days free of cardiovascular or respiratory organ support up to day 21 of the index hospitalization. The primary safety outcome was major bleeding, as defined by the International Society on Thrombosis and Hemostasis. Results: At the time of trial termination, 949 participants (median [IQR] age, 56 [46-65] years; 603 male [63.5%]) had been randomly assigned, 479 to the P2Y12 inhibitor group and 470 to usual care. In the P2Y12 inhibitor group, ticagrelor was used in 372 participants (78.8%) and clopidogrel in 100 participants (21.2%). The estimated adjusted odds ratio (AOR) for the effect of P2Y12 inhibitor on organ support-free days was 1.07 (95% credible interval, 0.85-1.33). The posterior probability of superiority (defined as an OR > 1.0) was 72.9%. Overall, 354 participants (74.5%) in the P2Y12 inhibitor group and 339 participants (72.4%) in the usual care group survived to hospital discharge (median AOR, 1.15; 95% credible interval, 0.84-1.55; posterior probability of superiority, 80.8%). Major bleeding occurred in 13 participants (2.7%) in the P2Y12 inhibitor group and 13 (2.8%) in the usual care group. The estimated mortality rate at 90 days for the P2Y12 inhibitor group was 25.5% and for the usual care group was 27.0% (adjusted hazard ratio, 0.96; 95% CI, 0.76-1.23; P = .77). Conclusions and Relevance: In this randomized clinical trial of critically ill participants hospitalized for COVID-19, treatment with a P2Y12 inhibitor did not improve the number of days alive and free of cardiovascular or respiratory organ support. The use of the P2Y12 inhibitor did not increase major bleeding compared with usual care. These data do not support routine use of a P2Y12 inhibitor in critically ill patients hospitalized for COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04505774.


Subject(s)
COVID-19 , Purinergic P2Y Receptor Agonists , Humans , Male , Middle Aged , Critical Illness/therapy , Hemorrhage , Hospital Mortality , Ticagrelor/therapeutic use , Purinergic P2Y Receptor Agonists/therapeutic use
5.
J Natl Med Assoc ; 2023 May 26.
Article in English | MEDLINE | ID: covidwho-2327603

ABSTRACT

The COVID-19 pandemic has compelled rethinking and changes in medical education, the most controversial perhaps being the cancelation of USMLE Step-2 Clinical Skills exam (Step-2 CS). What started in March of 2020 as suspension of this professional licensure exam, because of concerns about infection risk for examinees, standardized patients (SPs), and administrators, soon became permanent cancelation in January 2021. Expectedly, it triggered debate in medical education circles. Positively, however, the USMLE regulatory agencies (NBME and FSMB) saw an opportunity to innovate an exam tainted with perceptions of validity deficits, cost, examinee inconvenience, and worries about future pandemics; they therefore called for a public debate to fashion a way forward. We have approached the issue by defining Clinical Skills (CS), exploring its epistemology and historic evolution, including assessment modalities from Hippocratic times to the modern era. We defined CS as the art of medicine manifest in the physician-patient encounter as history taking (driven by communication skills and cultural competence) and physical examination. We classified CS components into knowledge and psychomotor skill domains, established their relative importance in the physician process (clinical reasoning) of diagnosis, thus establishing a theoretical framework for developing valid, reliable, feasible, fair, and verifiable CS assessment. Given the concerns for COVID-19 and future pandemics, we established that CS can largely be assessed remotely, and what could not, can be assessed locally (school/regional consortia level) as part of a USMLE-regulated/supervised assessment regimen with established national standards, thus maintaining USMLE's fiduciary responsibilities. We have suggested a national/regional program for faculty development in CS curriculum development, and assessment, including standard setting skills. This pool of expert faculty will form the nucleus of our proposed USMLE-regulated External Peer Review Initiative (EPRI). Finally, we suggest that CS evolves into an academic discipline/department of its own, rooted in scholarship.

6.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.26.542482

ABSTRACT

Targeted synthetic vaccines have the potential to transform our response to viral outbreaks; yet the design of these vaccines requires a comprehensive knowledge of viral immunogens, including T-cell epitopes. Having previously mapped the SARS-CoV-2 HLA-I landscape, here we report viral peptides that are naturally processed and loaded onto HLA-II complexes in infected cells. We identified over 500 unique viral peptides from canonical proteins, as well as from overlapping internal open reading frames (ORFs), revealing, for the first time, the contribution of internal ORFs to the HLA-II peptide repertoire. Most HLA-II peptides co-localized with the known CD4+ T cell epitopes in COVID-19 patients. We also observed that two reported immunodominant regions in the SARS-CoV-2 membrane protein are formed at the level of HLA-II presentation. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and non-structural and non-canonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize the vaccine effectiveness.


Subject(s)
COVID-19
7.
Journal of Paediatrics and Child Health ; 59(Supplement 1):152-153, 2023.
Article in English | EMBASE | ID: covidwho-2312612

ABSTRACT

Background: Treatment of iron deficiency anaemia (IDA) involves replenishing body iron stores either intravenously (IV) or orally. Previous studies of IV iron in pregnancy have been unblinded, which creates potential for bias measuring primary outcomes. We aimed to determine the feasibility of blinding pregnant women with IDA to IV iron (brown solution) compared to oral iron. Method(s): Two-arm, placebo-controlled randomised trial, with blinding of patients, clinicians and outcome assessors, at 2 Sydney maternity hospitals, 2021.2022. Pregnant women, .18 years of age, 26.32 + 6 weeks' gestation, with mildmoderate IDA (Haemoglobin 80.104 g/L and Ferritin <30 mug/ L), planning to give birth at one of the study hospitals were included. Women were randomised to either (1) a single IV ferric carboxymaltose 1000 mg infusion plus daily placebo oral capsules, or (2) oral capsules 80 mg elemental iron daily and a single placebo intravenous saline infusion, from treatment allocation to birth. Result(s): The study closed after recruiting 16/50 (32%) planned women, at a median gestation of 30 weeks. The baseline median haemoglobin was 101.5 g/L [interquartile range (IQR) 99.0-103.75 g/L] and baseline median ferritin was 11.5 mug/L [IQR 8.0-17.5 mug/L]. Two thirds of women (69%) correctly determined their treatment allocation on the infusion day, increasing to 87% at 4 weeks post infusion (100% of women IV iron). Median,[IQR] haemoglobin increased to 116 g/L, [113-120] and 110 g/L, [104-114] at 4 weeks in IV and oral iron groups respectively. Compliance, acceptability and side effects were measured. Conclusion(s): Blinding of women to IV iron was not successful at 4 weeks post-infusion. Trial recruitment was delayed and interrupted by COVID.

8.
Vaccine ; 41(29): 4249-4256, 2023 06 29.
Article in English | MEDLINE | ID: covidwho-2319667

ABSTRACT

BACKGROUND: Accurate determination of COVID-19 vaccination status is necessary to produce reliable COVID-19 vaccine effectiveness (VE) estimates. Data comparing differences in COVID-19 VE by vaccination sources (i.e., immunization information systems [IIS], electronic medical records [EMR], and self-report) are limited. We compared the number of mRNA COVID-19 vaccine doses identified by each of these sources to assess agreement as well as differences in VE estimates using vaccination data from each individual source and vaccination data adjudicated from all sources combined. METHODS: Adults aged ≥18 years who were hospitalized with COVID-like illness at 21 hospitals in 18 U.S. states participating in the IVY Network during February 1-August 31, 2022, were enrolled. Numbers of COVID-19 vaccine doses identified by IIS, EMR, and self-report were compared in kappa agreement analyses. Effectiveness of mRNA COVID-19 vaccines against COVID-19-associated hospitalization was estimated using multivariable logistic regression models to compare the odds of COVID-19 vaccination between SARS-CoV-2-positive case-patients and SARS-CoV-2-negative control-patients. VE was estimated using each source of vaccination data separately and all sources combined. RESULTS: A total of 4499 patients were included. Patients with ≥1 mRNA COVID-19 vaccine dose were identified most frequently by self-report (n = 3570, 79 %), followed by IIS (n = 3272, 73 %) and EMR (n = 3057, 68 %). Agreement was highest between IIS and self-report for 4 doses with a kappa of 0.77 (95 % CI = 0.73-0.81). VE point estimates of 3 doses against COVID-19 hospitalization were substantially lower when using vaccination data from EMR only (VE = 31 %, 95 % CI = 16 %-43 %) than when using all sources combined (VE = 53 %, 95 % CI = 41 %-62%). CONCLUSION: Vaccination data from EMR only may substantially underestimate COVID-19 VE.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Adolescent , Self Report , Electronic Health Records , Vaccine Efficacy , COVID-19/prevention & control , SARS-CoV-2 , Immunization , Vaccination , Hospitalization , RNA, Messenger
9.
Int J Artif Organs ; 46(5): 289-294, 2023 May.
Article in English | MEDLINE | ID: covidwho-2294616

ABSTRACT

OBJECTIVE: Extracorporeal membrane oxygenation (ECMO) is an intervention used for patients with acute respiratory distress syndrome (ARDS) from COVID-19 who have failed conventional ventilatory strategies. Very few studies have given insight into the outcomes of pregnant and postpartum patients requiring ECMO support. METHODS: Single center, retrospective, observational study of female pregnant and postpartum patients suffering COVID-19 ARDS and requiring ECMO. RESULTS: Eight SARS-CoV-2 positive patients were identified. The average age was 31 ± 4 years, with Body Mass Indices (BMI) and SOFA scores ranging between 32-49 and 8-11, respectively. Two patients were pregnant at the time of ECMO initiation, two were peripartum, and four were postpartum. Five patients (63%) had bleeding, and one patient had a hysterectomy. Seven patients (88%) were supported by V-V ECMO and one with V-A ECMO. Patients had between one and three circuit exchanges due to oxygenator failure or clots in the circuit. All patients were in ICU between 7 and 74 days, with hospital length of stay between 8 and 81 days. All patients were weaned off ECMO and were successfully discharged from the hospital. All newborns were born via cesarean section, and all survived to discharge. CONCLUSION: Our study shows a 100% neonatal and maternal survival rate demonstrating that ECMO in this patient population is safe. These patients should be transferred to experienced high-volume ECMO centers with the ability to perform emergent cesarean sections. ECMO should be considered a life-saving therapy for pregnant women with severe COVID-19 with an overall excellent maternal and neonatal survival rate.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Infant, Newborn , Humans , Female , Pregnancy , Adult , Extracorporeal Membrane Oxygenation/adverse effects , Retrospective Studies , Cesarean Section , COVID-19/complications , COVID-19/therapy , SARS-CoV-2 , Postpartum Period , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
10.
MMWR Morb Mortal Wkly Rep ; 72(17): 463-468, 2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2294077

ABSTRACT

As of April 2023, the COVID-19 pandemic has resulted in 1.1 million deaths in the United States, with approximately 75% of deaths occurring among adults aged ≥65 years (1). Data on the durability of protection provided by monovalent mRNA COVID-19 vaccination against critical outcomes of COVID-19 are limited beyond the Omicron BA.1 lineage period (December 26, 2021-March 26, 2022). In this case-control analysis, the effectiveness of 2-4 monovalent mRNA COVID-19 vaccine doses was evaluated against COVID-19-associated invasive mechanical ventilation (IMV) and in-hospital death among immunocompetent adults aged ≥18 years during February 1, 2022-January 31, 2023. Vaccine effectiveness (VE) against IMV and in-hospital death was 62% among adults aged ≥18 years and 69% among those aged ≥65 years. When stratified by time since last dose, VE was 76% at 7-179 days, 54% at 180-364 days, and 56% at ≥365 days. Monovalent mRNA COVID-19 vaccination provided substantial, durable protection against IMV and in-hospital death among adults during the Omicron variant period. All adults should remain up to date with recommended COVID-19 vaccination to prevent critical COVID-19-associated outcomes.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines , Hospital Mortality , Pandemics , Respiration, Artificial , SARS-CoV-2 , RNA, Messenger
11.
Behavior Analysis: Research and Practice ; 23(1):49-59, 2023.
Article in English | APA PsycInfo | ID: covidwho-2277087

ABSTRACT

COVID-19 is a disease caused by the virus, SARS-CoV-2, and it can affect individuals differently. Some people may experience mild symptoms while others may experience severe illness or death. Vaccines that are authorized to protect against COVID-19 help the human body develop immunity to SARS-CoV-2 and reduce the risk of COVID-19 and its potentially serious complications. We evaluated the effects of graduated exposure and differential reinforcement to teach individuals with autism to comply with the administration of a COVID-19 vaccine. All three participants had a history of engaging in challenging behavior during previous vaccination procedures. Following the intervention, all participants successfully received two doses of a COVID-19 vaccine. The results of this study support previous research on graduated exposure and differential reinforcement as a treatment for increasing compliance with medical procedures for individuals with autism. (PsycInfo Database Record (c) 2023 APA, all rights reserved)

12.
Front Rehabil Sci ; 4: 1049554, 2023.
Article in English | MEDLINE | ID: covidwho-2260846

ABSTRACT

Use of telehealth has grown substantially in recent times due to the COVID-19 pandemic. Remote care services may greatly benefit patients with disabilities; chronic conditions; and neurological, musculoskeletal, and pain disorders, thereby allowing continuity of rehabilitation care, reducing barriers such as transportation, and minimizing COVID-19 exposure. In March 2020, our rehabilitation hospital, Shirley Ryan AbilityLab, launched a HIPAA-compliant telemedicine program for outpatient and day rehabilitation clinics and telerehabilitation therapy programs. The objective of this study was to examine patients' experiences and satisfaction with telemedicine in the rehabilitation physician practice, including novel virtual multidisciplinary evaluations. The present study examines survey data collected from 157 patients receiving telemedicine services at Shirley Ryan AbilityLab from December 2020-August 2021. Respondents were 61.8% female, predominantly White (82.2%) with ages ranging across the lifespan (69.4% over age 50 years). Diagnostic categories of the respondents included: musculoskeletal conditions 28%, chronic pain 22.3%, localized pain 10.2%, neurological conditions 26.8%, and Parkinson's and movement disorders 12.7%. Survey responses indicate that the telemedicine experiences were positive and well received. The majority of participants found these services easy to use, effective, and safe, and were overall satisfied with the attention and care they received from the providers-even for those who had not previously used telehealth. Respondents identified a variety of benefits, including alleviating financial and travel-related burdens. There were no significant differences in telehealth experiences or satisfaction across the different clinical diagnostic groups. Respondents viewed the integrated physician and rehabilitation therapist telehealth multidisciplinary model favorably, citing positive feedback regarding receiving multiple perspectives and recommendations, feeling like an integrated member of their healthcare team, and having a comprehensive, holistic team approach along with effective communication. These findings support that telemedicine can provide an effective care model in physiatry (physical medicine and rehabilitation) clinics, across different neurological, musculoskeletal, and pain conditions and in multidisciplinary team care settings. The insights provided by the present study expand our understanding of patient experiences with remote care frameworks for rehabilitation care, while controlling for institutional variation, and ultimately will help provide guidance regarding longer term integration of telemedicine in physiatry and multidisciplinary care models.

13.
J Infect Dis ; 2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2257228

ABSTRACT

BACKGROUND: SARS-CoV-2 genomic and subgenomic RNA levels are frequently used as a correlate of infectiousness. The impact of host factors and SARS-CoV-2 lineage on RNA viral load is unclear. METHODS: Total nucleocapsid (N) and subgenomic N (sgN) RNA levels were measured by RT-qPCR in specimens from 3,204 individuals hospitalized with COVID-19 at 21 hospitals. RT-qPCR cycle threshold (Ct) values were used to estimate RNA viral load. The impact of time of sampling, SARS-CoV-2 variant, age, comorbidities, vaccination, and immune status on N and sgN Ct values were evaluated using multiple linear regression. RESULTS: Ct values at presentation for N (mean ±standard deviation) were 24.14±4.53 for non-variants of concern, 25.15±4.33 for Alpha, 25.31±4.50 for Delta, and 26.26±4.42 for Omicron. N and sgN RNA levels varied with time since symptom onset and infecting variant but not with age, comorbidity, immune status, or vaccination. When normalized to total N RNA, sgN levels were similar across all variants. CONCLUSIONS: RNA viral loads were similar among hospitalized adults, irrespective of infecting variant and known risk factors for severe COVID-19. Total N and subgenomic RNA N viral loads were highly correlated, suggesting that subgenomic RNA measurements adds little information for the purposes of estimating infectivity.

14.
Clin Infect Dis ; 2022 May 17.
Article in English | MEDLINE | ID: covidwho-2236202

ABSTRACT

BACKGROUND: COVID-19 mRNA vaccines were authorized in the United States in December 2020. Although vaccine effectiveness (VE) against mild infection declines markedly after several months, limited understanding exists on the long-term durability of protection against COVID-19-associated hospitalization. METHODS: Case control analysis of adults (≥18 years) hospitalized at 21 hospitals in 18 states March 11 - December 15, 2021, including COVID-19 case patients and RT-PCR-negative controls. We included adults who were unvaccinated or vaccinated with two doses of a mRNA vaccine before the date of illness onset. VE over time was assessed using logistic regression comparing odds of vaccination in cases versus controls, adjusting for confounders. Models included dichotomous time (<180 vs ≥180 days since dose two) and continuous time modeled using restricted cubic splines. RESULTS: 10,078 patients were included, 4906 cases (23% vaccinated) and 5172 controls (62% vaccinated). Median age was 60 years (IQR 46-70), 56% were non-Hispanic White, and 81% had ≥1 medical condition. Among immunocompetent adults, VE <180 days was 90% (95%CI: 88-91) vs 82% (95%CI: 79-85) at ≥180 days (p < 0.001). VE declined for Pfizer-BioNTech (88% to 79%, p < 0.001) and Moderna (93% to 87%, p < 0.001) products, for younger adults (18-64 years) [91% to 87%, p = 0.005], and for adults ≥65 years of age (87% to 78%, p < 0.001). In models using restricted cubic splines, similar changes were observed. CONCLUSION: In a period largely pre-dating Omicron variant circulation, effectiveness of two mRNA doses against COVID-19-associated hospitalization was largely sustained through 9 months.

15.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: covidwho-2229935

ABSTRACT

The widespread presence of autoantibodies in acute infection with SARS-CoV-2 is increasingly recognized, but the prevalence of autoantibodies in non-SARS-CoV-2 infections and critical illness has not yet been reported. We profiled IgG autoantibodies in 267 patients from 5 independent cohorts with non-SARS-CoV-2 viral, bacterial, and noninfectious critical illness. Serum samples were screened using Luminex arrays that included 58 cytokines and 55 autoantigens, many of which are associated with connective tissue diseases (CTDs). Samples positive for anti-cytokine antibodies were tested for receptor blocking activity using cell-based functional assays. Anti-cytokine antibodies were identified in > 50% of patients across all 5 acutely ill cohorts. In critically ill patients, anti-cytokine antibodies were far more common in infected versus uninfected patients. In cell-based functional assays, 11 of 39 samples positive for select anti-cytokine antibodies displayed receptor blocking activity against surface receptors for Type I IFN, GM-CSF, and IL-6. Autoantibodies against CTD-associated autoantigens were also commonly observed, including newly detected antibodies that emerged in longitudinal samples. These findings demonstrate that anti-cytokine and autoantibodies are common across different viral and nonviral infections and range in severity of illness.


Subject(s)
Autoantibodies , COVID-19 , Humans , Autoantigens , Critical Illness , Cytokines , SARS-CoV-2
16.
Alzheimer's & dementia : the journal of the Alzheimer's Association ; 18(Suppl 6), 2022.
Article in English | EuropePMC | ID: covidwho-2218568

ABSTRACT

Background Neurological and neuropsychiatric complications have been documented in patients with COVID‐19. This study aims to investigate the utility of two neurological blood‐based biomarkers to predict neurological complications and mortality due to COVID‐19 in the intensive care unit (ICU). Neurofilament light (NF‐L) is a marker of axonal damage and glial fibrillary acidic protein (GFAP) is a marker of astrocytic activation. Methods Patients with respiratory failure were prospectively enrolled from the ICU at Vancouver General Hospital. COVID‐19 patients were excluded if the diagnosis was an incidental secondary finding upon ICU admission or if their enrollment was >10 days after ICU admission. Control patients were excluded if their enrollment was >4 days after ICU admission or if their primary diagnosis was non‐respiratory. Plasma samples were collected upon admission study enrollment, with additional samples collected on day 7 and day 14 from COVID‐19 patients. Plasma NF‐L and GFAP were quantified using the Quanterix Simoa HD‐X analyzer. Group comparisons were performed using a Mann‐Whitney test. Trajectory analysis was performed using a Wilcoxon test or Friedman one‐way ANOVA. Area under receiver operating curve (AUROC) analysis was calculated to predict neurological complications and mortality during ICU stay. Results Of the 242 patients enrolled, 209 were confirmed positive for SARS‐CoV‐2 while 33 served as ICU controls. Median age was 61 years for the COVID‐19 group, 64 years for controls. Upon ICU admission, NF‐L was 32% lower and GFAP was 24% lower in those with COVID‐19 compared to controls after correcting for age. NF‐L concentrations increase by doubling each week of ICU stay, while GFAP remained stable. Over the course of their ICU stay, 16% COVID‐19 patients were diagnosed with a neurological complication and 17% died. Plasma NF‐L and GFAP demonstrated a moderate to strong ability to predict neurological complications (AUROC: NF‐L=0.702;GFAP=0.722) and mortality (AUROC: NF‐L=0.815;GFAP=0.809) during ICU stay. Conclusions Upon ICU admission, NF‐L and GFAP were lower in patients with COVID‐19 compared to controls. NF‐L, but not GFAP, increased over the course of ICU stay in patients with COVID‐19. Both markers were able to predict neurological complication or ICU mortality with moderate to strong accuracy.

17.
Open Forum Infect Dis ; 10(1): ofac698, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2212869

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) vaccine effectiveness (VE) studies are increasingly reporting relative VE (rVE) comparing a primary series plus booster doses with a primary series only. Interpretation of rVE differs from traditional studies measuring absolute VE (aVE) of a vaccine regimen against an unvaccinated referent group. We estimated aVE and rVE against COVID-19 hospitalization in primary-series plus first-booster recipients of COVID-19 vaccines. Methods: Booster-eligible immunocompetent adults hospitalized at 21 medical centers in the United States during December 25, 2021-April 4, 2022 were included. In a test-negative design, logistic regression with case status as the outcome and completion of primary vaccine series or primary series plus 1 booster dose as the predictors, adjusted for potential confounders, were used to estimate aVE and rVE. Results: A total of 2060 patients were analyzed, including 1104 COVID-19 cases and 956 controls. Relative VE against COVID-19 hospitalization in boosted mRNA vaccine recipients versus primary series only was 66% (95% confidence interval [CI], 55%-74%); aVE was 81% (95% CI, 75%-86%) for boosted versus 46% (95% CI, 30%-58%) for primary. For boosted Janssen vaccine recipients versus primary series, rVE was 49% (95% CI, -9% to 76%); aVE was 62% (95% CI, 33%-79%) for boosted versus 36% (95% CI, -4% to 60%) for primary. Conclusions: Vaccine booster doses increased protection against COVID-19 hospitalization compared with a primary series. Comparing rVE measures across studies can lead to flawed interpretations of the added value of a new vaccination regimen, whereas difference in aVE, when available, may be a more useful metric.

18.
Behavior Analysis: Research and Practice ; : No Pagination Specified, 2022.
Article in English | APA PsycInfo | ID: covidwho-2185567

ABSTRACT

COVID-19 is a disease caused by the virus, SARS-CoV-2, and it can affect individuals differently. Some people may experience mild symptoms while others may experience severe illness or death. Vaccines that are authorized to protect against COVID-19 help the human body develop immunity to SARS-CoV-2 and reduce the risk of COVID-19 and its potentially serious complications. We evaluated the effects of graduated exposure and differential reinforcement to teach individuals with autism to comply with the administration of a COVID-19 vaccine. All three participants had a history of engaging in challenging behavior during previous vaccination procedures. Following the intervention, all participants successfully received two doses of a COVID-19 vaccine. The results of this study support previous research on graduated exposure and differential reinforcement as a treatment for increasing compliance with medical procedures for individuals with autism. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

19.
MMWR Morb Mortal Wkly Rep ; 71(5152): 1625-1630, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2204208

ABSTRACT

Monovalent COVID-19 mRNA vaccines, designed against the ancestral strain of SARS-CoV-2, successfully reduced COVID-19-related morbidity and mortality in the United States and globally (1,2). However, vaccine effectiveness (VE) against COVID-19-associated hospitalization has declined over time, likely related to a combination of factors, including waning immunity and, with the emergence of the Omicron variant and its sublineages, immune evasion (3). To address these factors, on September 1, 2022, the Advisory Committee on Immunization Practices recommended a bivalent COVID-19 mRNA booster (bivalent booster) dose, developed against the spike protein from ancestral SARS-CoV-2 and Omicron BA.4/BA.5 sublineages, for persons who had completed at least a primary COVID-19 vaccination series (with or without monovalent booster doses) ≥2 months earlier (4). Data on the effectiveness of a bivalent booster dose against COVID-19 hospitalization in the United States are lacking, including among older adults, who are at highest risk for severe COVID-19-associated illness. During September 8-November 30, 2022, the Investigating Respiratory Viruses in the Acutely Ill (IVY) Network§ assessed effectiveness of a bivalent booster dose received after ≥2 doses of monovalent mRNA vaccine against COVID-19-associated hospitalization among immunocompetent adults aged ≥65 years. When compared with unvaccinated persons, VE of a bivalent booster dose received ≥7 days before illness onset (median = 29 days) against COVID-19-associated hospitalization was 84%. Compared with persons who received ≥2 monovalent-only mRNA vaccine doses, relative VE of a bivalent booster dose was 73%. These early findings show that a bivalent booster dose provided strong protection against COVID-19-associated hospitalization in older adults and additional protection among persons with previous monovalent-only mRNA vaccination. All eligible persons, especially adults aged ≥65 years, should receive a bivalent booster dose to maximize protection against COVID-19 hospitalization this winter season. Additional strategies to prevent respiratory illness, such as masking in indoor public spaces, should also be considered, especially in areas where COVID-19 community levels are high (4,5).


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Vaccine Efficacy , Hospitalization , RNA, Messenger , Vaccines, Combined
20.
J Neurol Sci ; 444: 120510, 2023 01 15.
Article in English | MEDLINE | ID: covidwho-2122629

ABSTRACT

BACKGROUND AND OBJECTIVES: Parkinson's disease (PD) is associated with a heightened inflammatory state, including activated T cells. However, it is unclear whether these PD T cell responses are antigen specific or more indicative of generalized hyperresponsiveness. Our objective was to measure and compare antigen-specific T cell responses directed towards antigens derived from commonly encountered human pathogens/vaccines in patients with PD and age-matched healthy controls (HC). METHODS: Peripheral blood mononuclear cells (PBMCs) from 20 PD patients and 19 age-matched HCs were screened. Antigen specific T cell responses were measured by flow cytometry using a combination of the activation induced marker (AIM) assay and intracellular cytokine staining. RESULTS: Here we show that both PD patients and HCs show similar T cell activation levels to several antigens derived from commonly encountered human pathogens/vaccines in the general population. Similarly, we also observed no difference between HC and PD in the levels of CD4 and CD8 T cell derived cytokines produced in response to any of the common antigens tested. These antigens encompassed both viral (coronavirus, rhinovirus, respiratory syncytial virus, influenza, cytomegalovirus) and bacterial (pertussis, tetanus) targets. CONCLUSIONS: These results suggest the T cell dysfunction observed in PD may not extend itself to abnormal responses to commonly encountered or vaccine-target antigens. Our study supports the notion that the targets of inflammatory T cell responses in PD may be more directed towards autoantigens like α-synuclein (α-syn) rather than common foreign antigens.


Subject(s)
Parkinson Disease , Vaccines , Humans , T-Lymphocytes , Leukocytes, Mononuclear , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL